N20 - Bonding **Energy of Bonding** #### **Electronegativity** The ability of an atom in a molecule to attract shared electrons to itself. | H
2.1 | 2 | 0 | be | elow 1 | .0 | | 2.0 | 0-2.4 | | | | 13 | 14 | 15 | 16 | 17 | |-----------|-----------|--|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Li
1.0 | Be
1.5 | 1.0-1.4 | | | | 2.5-2.9 | | | | B
2.0 | C
2.5 | N
3.0 | O
3.5 | F
4.0 | | | | Na
0.9 | Mg
1.2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | A1
1.5 | Si
1.8 | P
2.1 | S
2.5 | C1
3.0 | | K
0.8 | Ca
1.0 | Sc
1.3 | Ti
1.5 | V
1.6 | Cr
1.6 | Mn
1.5 | Fe
1.8 | Co
1.8 | Ni
1.8 | Cu
1.9 | Zn
1.6 | Ga
1.6 | Ge
1.8 | As
2.0 | Se
2.4 | Br
2.8 | | Rb
0.8 | Sr
1.0 | Y
1.2 | Zr
1.4 | Nb
1.6 | Mo
1.8 | Tc
1.9 | Ru
2.2 | Rh
2.2 | Pd
2.2 | Ag
1.9 | Cd
1.7 | In
1.7 | Sn
1.8 | Sb
1.9 | Te
2.1 | I
2.5 | | Cs
0.8 | Ba
0.9 | La*
1.1 | Hf
1.3 | Ta
1.5 | W
2.4 | Re
1.9 | Os
2.2 | Ir
2.2 | Pt 2.2 | Au
2.4 | Hg
1.9 | Tl
1.8 | Pb
1.8 | Bi
1.9 | Po
2.0 | At 2.2 | | Fr
0.7 | Ra
0.9 | Ac [†] *Lanthanides: 1.1–1.3
†Actinides: 1.3–1.5 | | | | | | | | | | | | | | | #### **Ionic Bonds** - Electrons are transferred - Electronegativity differences are generally greater than 1.7 – large difference - The formation of ionic bonds is always exothermic! # Determination of lonic Character Electronegativity difference is not the final determination of ionic character Compounds are ionic if they conduct electricity in their molten state ## Coulomb's Law # Describes the attractions and repulsions between charged particles. -Seen represented in various ways, no big deal! $$F \propto \frac{q_1 q_2}{r^2}$$ $$F = k \frac{q_1 q_2}{r^2} E = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$$ k and the $\frac{1}{4\pi\varepsilon_0}$ are Coulomb's constant which varies based on what substance the objects are in #### Effect of Distance Between Particles #### For like charges, (+ and +, or - and -) - Remember, like charges repel. Takes Energy to push them close. - Potential energy (E) is positive. - E decreases as the particles get farther apart as r increases. #### For opposite charges, (+ and –) - Remember, like charges attract. More stable closer together. - Potential energy is negative. (Negative is good!) - E becomes more negative as the particles get closer together. ## **Effect of Charge** - The strength of the interaction increases as the size of the charges increases. - Electrons are more strongly attracted to a nucleus with a 2+ charge than a nucleus with a 1+ charge. #### Therefore... - Strongest ionic bond would be: - Large charge magnitude (example: +2 versus +1, or -3 versus -2) AND - Small ionic radius (example: Li+ versus Cs+, or Ct versus t-) ## Sodium Chloride Crystal Lattice - lonic compounds form solids at ordinary temperatures. - lonic compounds organize in a characteristic crystal lattice of alternating positive and negative ions. ## **Lattice Dissociation Energy** The amount of energy required to separate a mole of solid ionic compound into its gaseous ions ## **Lattice Formation Energy** The amount of energy involved to form a mole of solid ionic compound from its gaseous ions Usually just called "The Lattice Energy" Pretend there are a mole of each element here © # **Example:** Steps for Forming LiF - 1) Turn solid Li into a gas - Sublimation - Bond energy - 3) Ionize Li → Li+ - Ionization energy - 4) Add an electron to $F \rightarrow F^-$ - Electron affinity - 5) Form the ionic bond - Lattice energy ## Often see diagrams similar to this #### Lattice Energy cont... # Often see Lattice energy simplified into "a modified form of Coulomb's Law" with r instead of r² k is a proportionality constant - depends on structure of the solid and the electron configurations of the ions. k is not the rate constant $$Lattice\ Energy = k\left(\frac{Q_1Q_2}{r}\right)$$ #### **How Strong is the Bond?** The more energy required to decompose an ion pair (from a lattice) into ions the stronger the bond. - Often use the "Enthalpy of Dissociation" to discuss this bond strength - Equal but opposite sign as the Lattice Formation Energy. $$E = \Delta H_{dissociation} \propto \left(\frac{Q_1 Q_2}{r}\right)$$ #### Estimate ΔH_f for Sodium Chloride $$Na(s) + \frac{1}{2}Cl_2(g) \rightarrow NaCl(s)$$ | Lattice Energy | -786 kJ/mol | | | | |--------------------------------|-------------|--|--|--| | Ionization Energy for Na | 495 kJ/mol | | | | | Electron Affinity for Cl | -349 kJ/mol | | | | | Bond energy of Cl ₂ | 239 kJ/mol | | | | | Enthalpy of sublimation for Na | 109 kJ/mol | | | | Na(s) → Na(g) + 109 kJ Na(g) → Na⁺(g) + e⁻ + 495 kJ $$\frac{1}{2}$$ Cl₂(g) → Cl(g) + $\frac{1}{2}$ (239 kJ) Cl(g) + e⁻ → Cl(g) - 349 kJ Na⁺(g) + Cl⁺(g) → NaCl(s) -786 kJ $Na(s) + \frac{1}{2} Cl_2(g) \rightarrow NaCl(s)$ -412 kJ/mol #### **Covalent Bonds** #### **Polar-Covalent bonds** - Electrons are unequally shared - Electronegativity difference between 0.3 and 1.7 #### Nonpolar-Covalent bonds - Electrons are equally shared - Electronegativity difference between 0 to 0.3 ## **Covalent Bonding Forces** - Electron electron repulsive forces = Bad - Proton proton repulsive forces = Bad - Electron proton attractive forces = Good #### How Close Together Before "Bonded"? "Bonded" when at lowest, most stable energy. Goldie Locks... Too far = bad Too close = bad You want it juuust right Interaction Energy of Two Hydrogen Atoms # Bond Length Diagram #### **Bond Length and Energy** Bonds between elements become shorter and stronger as multiplicity increases. | Bond | Bond type | Bond length (pm) | Bond Energy (kJ/mol) | | | |--------------|-----------|------------------|----------------------|--|--| | C - C | Single | 154 | 347 | | | | C = C | Double | 134 | 614 | | | | $C \equiv C$ | Triple | 120 | 839 | | | | C - O | Single | 143 | 358 | | | | C = O | Double | 123 | 745 | | | | C-N | Single | 143 | 305 | | | | C = N | Double | 138 | 615 | | | | $C \equiv N$ | Triple | 116 | 891 | | | ## **Bond Energy and Enthalpy** $$\Delta H = \sum D_{bondsbroken} - \sum D_{bonds formed}$$ Energy required Energy released D = Bond energy per mole of bonds Breaking bonds always requires energy Breaking = endothermic Forming bonds always releases energy Forming = exothermic #### **Bond Energy and Enthalpy** "Takes to Break" = + endo "Frees to Form" = - exo #### How much energy does it take to break 2H₂O into 2H₂ and O₂? Bond energies: O-H 463 kJ/mol, H-H 436 kJ/mol, O=O 498 kJ/mol - Breaking: 4 O-H bonds → + values, absorbed, endo - Making: 2 H-H bonds, and 1 O=O bond → values, released, exo $$\Delta H = [4(463)] + [2(-436)+1(-498)] = 482 \text{ kJ/mol}$$ You see numbers vary a decent amount from chart to chart. Use what is in the problem, otherwise look them up an don't stress about slight differences.