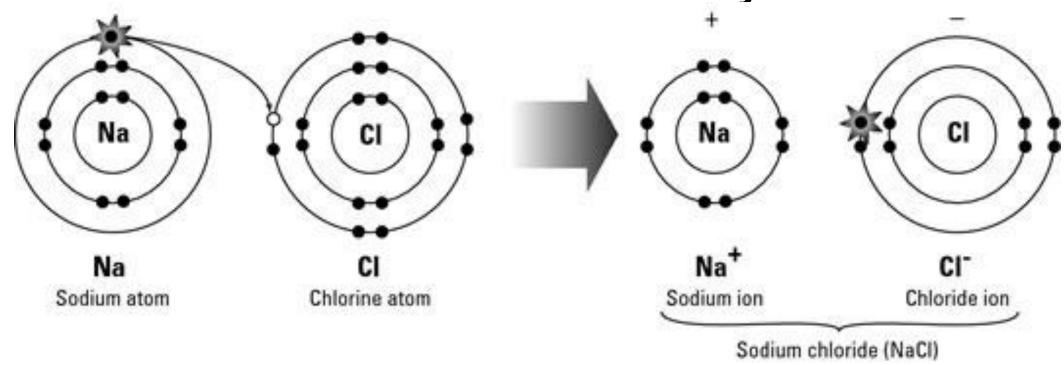
N20 - Bonding

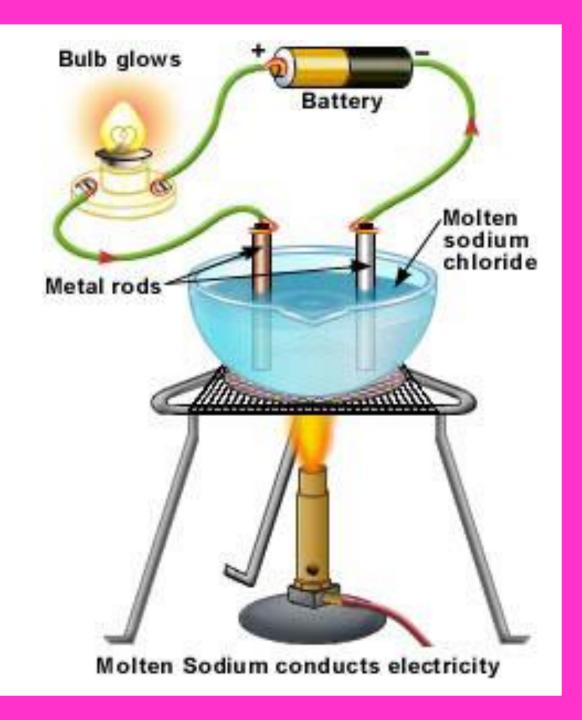
Energy of Bonding


Electronegativity

The ability of an atom in a molecule to attract shared electrons to itself.

H 2.1	2	0	be	elow 1	.0		2.0	0-2.4				13	14	15	16	17
Li 1.0	Be 1.5	1.0-1.4				2.5-2.9				B 2.0	C 2.5	N 3.0	O 3.5	F 4.0		
Na 0.9	Mg 1.2	3	4	5	6	7	8	9	10	11	12	A1 1.5	Si 1.8	P 2.1	S 2.5	C1 3.0
K 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.8	Ni 1.8	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8
Rb 0.8	Sr 1.0	Y 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Tc 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	I 2.5
Cs 0.8	Ba 0.9	La* 1.1	Hf 1.3	Ta 1.5	W 2.4	Re 1.9	Os 2.2	Ir 2.2	Pt 2.2	Au 2.4	Hg 1.9	Tl 1.8	Pb 1.8	Bi 1.9	Po 2.0	At 2.2
Fr 0.7	Ra 0.9	Ac [†] *Lanthanides: 1.1–1.3 †Actinides: 1.3–1.5														

Ionic Bonds


- Electrons are transferred
- Electronegativity differences are generally greater than 1.7 – large difference
- The formation of ionic bonds is always exothermic!

Determination of lonic Character

Electronegativity difference is not the final determination of ionic character

Compounds are ionic if they conduct electricity in their molten state

Coulomb's Law

Describes the attractions and repulsions between charged particles.

-Seen represented in various ways, no big deal!

$$F \propto \frac{q_1 q_2}{r^2}$$

$$F = k \frac{q_1 q_2}{r^2} E = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$$

k and the $\frac{1}{4\pi\varepsilon_0}$ are Coulomb's constant which varies based on what substance the objects are in

Effect of Distance Between Particles

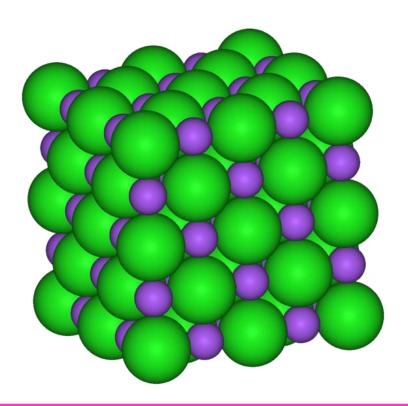
For like charges, (+ and +, or - and -)

- Remember, like charges repel. Takes Energy to push them close.
- Potential energy (E) is positive.
- E decreases as the particles get farther apart as r increases.

For opposite charges, (+ and –)

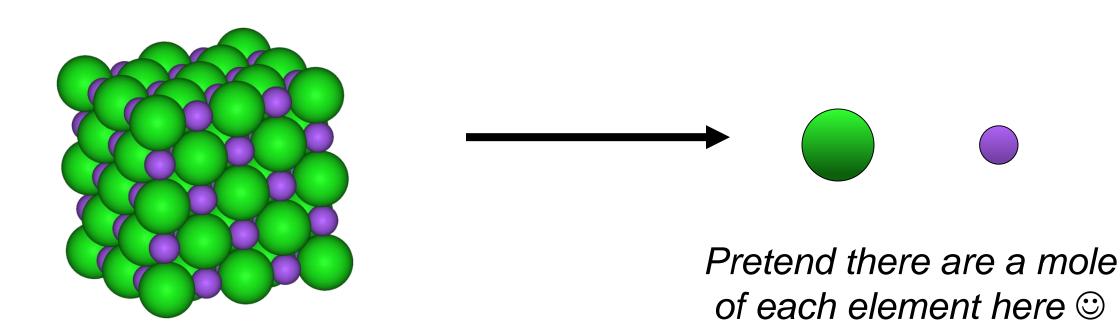
- Remember, like charges attract. More stable closer together.
- Potential energy is negative. (Negative is good!)
- E becomes more negative as the particles get closer together.

Effect of Charge


- The strength of the interaction increases as the size of the charges increases.
 - Electrons are more strongly attracted to a nucleus with a 2+ charge than a nucleus with a 1+ charge.

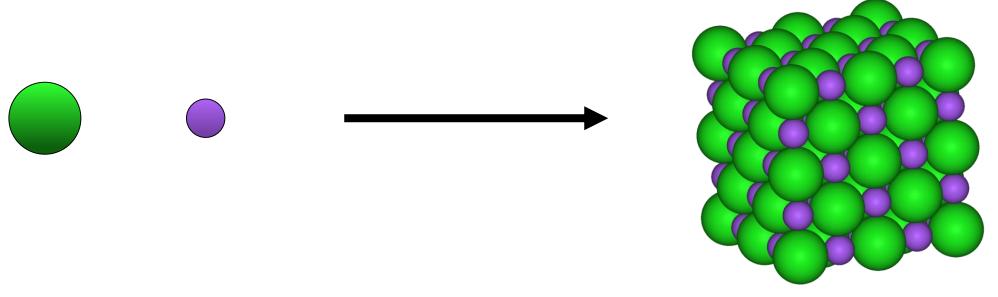
Therefore...

- Strongest ionic bond would be:
 - Large charge magnitude (example: +2 versus +1, or -3 versus -2)
 AND
 - Small ionic radius (example: Li+ versus Cs+, or Ct versus t-)


Sodium Chloride Crystal Lattice

- lonic compounds form solids at ordinary temperatures.
- lonic compounds organize in a characteristic crystal lattice of alternating positive and negative ions.

Lattice Dissociation Energy


The amount of energy required to separate a mole of solid ionic compound into its gaseous ions

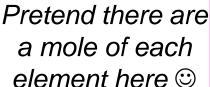
Lattice Formation Energy

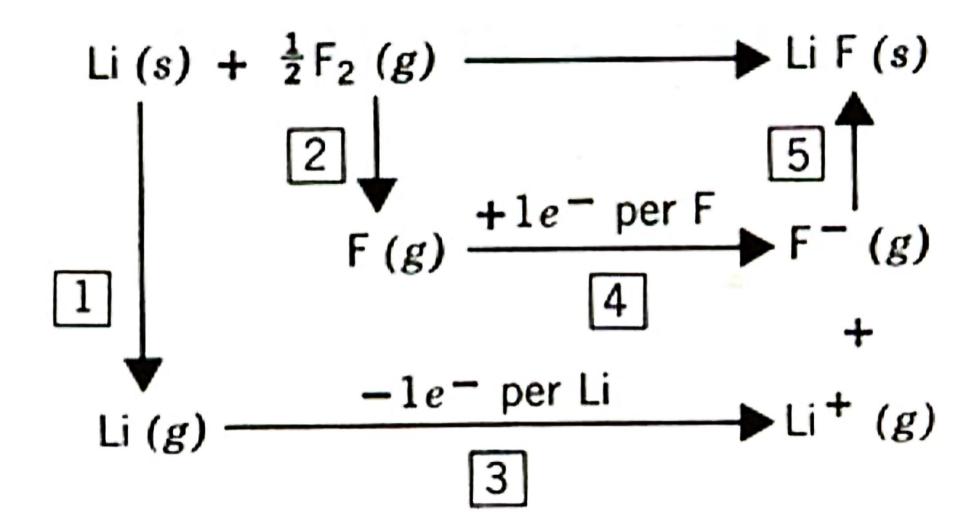
The amount of energy involved to form a mole of solid ionic compound from its gaseous ions

Usually just called "The Lattice Energy"

Pretend there are a mole of each element here ©

Example: Steps for Forming LiF

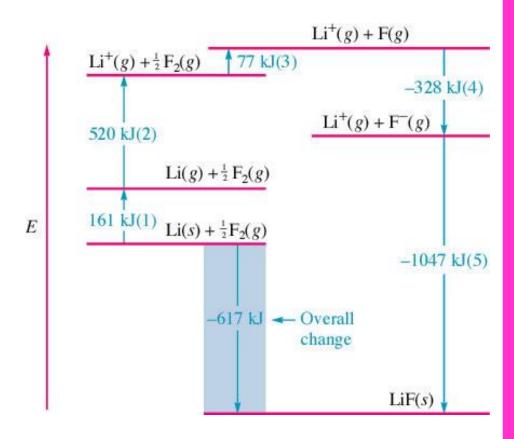

- 1) Turn solid Li into a gas
 - Sublimation


- Bond energy
- 3) Ionize Li → Li+
 - Ionization energy
- 4) Add an electron to $F \rightarrow F^-$
 - Electron affinity
- 5) Form the ionic bond
 - Lattice energy

Often see diagrams similar to this

Lattice Energy cont...

Often see Lattice energy simplified into "a modified form of Coulomb's Law" with r instead of r²


 k is a proportionality constant - depends on structure of the solid and the electron configurations of the ions.
 k is not the rate constant

$$Lattice\ Energy = k\left(\frac{Q_1Q_2}{r}\right)$$

How Strong is the Bond?

The more energy required to decompose an ion pair (from a lattice) into ions the stronger the bond.

- Often use the "Enthalpy of Dissociation" to discuss this bond strength
- Equal but opposite sign as the Lattice Formation Energy.

$$E = \Delta H_{dissociation} \propto \left(\frac{Q_1 Q_2}{r}\right)$$

Estimate ΔH_f for Sodium Chloride

$$Na(s) + \frac{1}{2}Cl_2(g) \rightarrow NaCl(s)$$

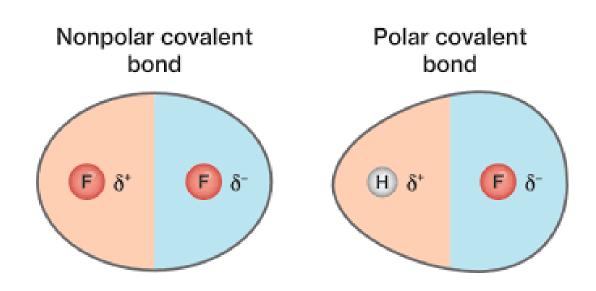
Lattice Energy	-786 kJ/mol			
Ionization Energy for Na	495 kJ/mol			
Electron Affinity for Cl	-349 kJ/mol			
Bond energy of Cl ₂	239 kJ/mol			
Enthalpy of sublimation for Na	109 kJ/mol			

Na(s) → Na(g) + 109 kJ
Na(g) → Na⁺(g) + e⁻ + 495 kJ

$$\frac{1}{2}$$
 Cl₂(g) → Cl(g) + $\frac{1}{2}$ (239 kJ)
Cl(g) + e⁻ → Cl(g) - 349 kJ
Na⁺(g) + Cl⁺(g) → NaCl(s) -786 kJ

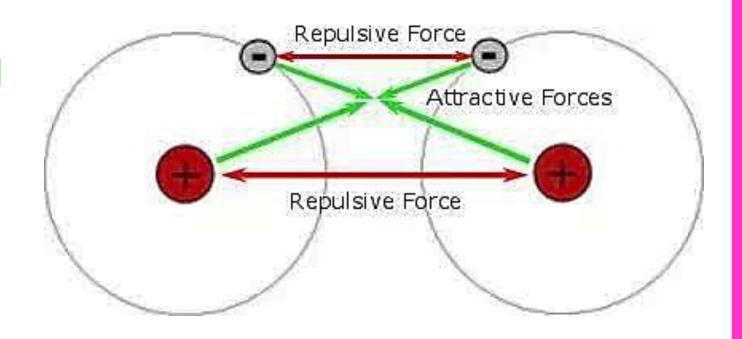
 $Na(s) + \frac{1}{2} Cl_2(g) \rightarrow NaCl(s)$

-412 kJ/mol


Covalent Bonds

Polar-Covalent bonds

- Electrons are unequally shared
- Electronegativity difference between 0.3 and 1.7


Nonpolar-Covalent bonds

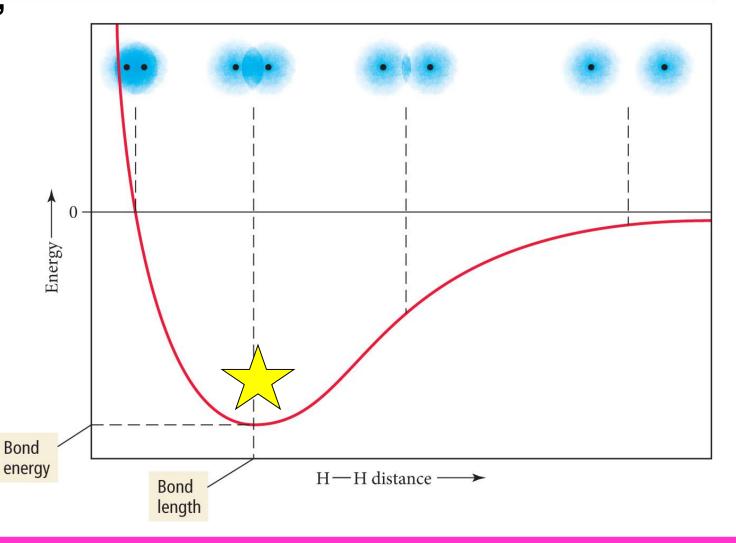
- Electrons are equally shared
- Electronegativity difference between 0 to 0.3

Covalent Bonding Forces

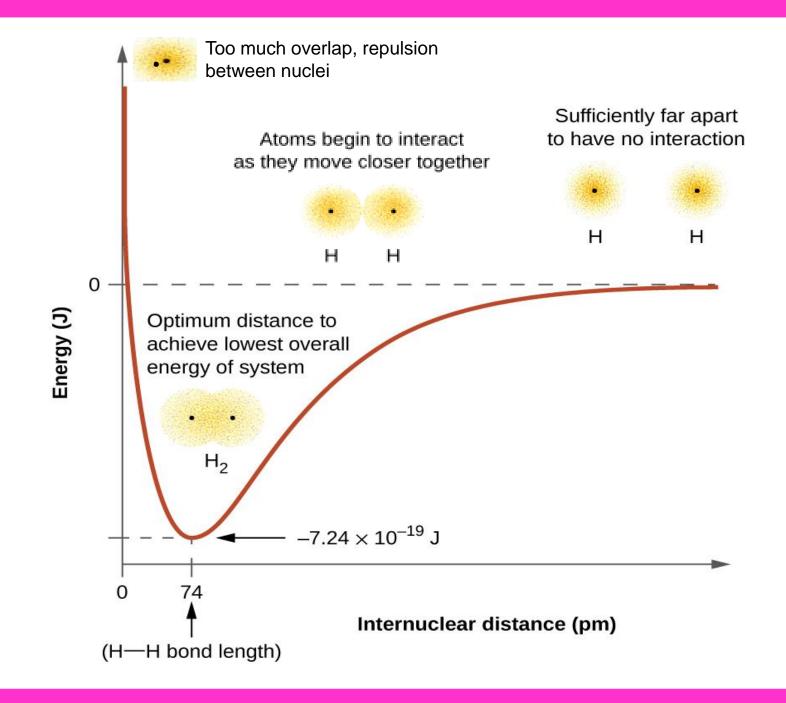
- Electron electron repulsive forces = Bad
- Proton proton repulsive forces = Bad
- Electron proton attractive forces = Good

How Close Together Before "Bonded"?

"Bonded" when at lowest, most stable energy.


Goldie Locks...

Too far = bad


Too close = bad

You want it juuust right

Interaction Energy of Two Hydrogen Atoms

Bond Length Diagram

Bond Length and Energy

Bonds between elements become shorter and stronger as multiplicity increases.

Bond	Bond type	Bond length (pm)	Bond Energy (kJ/mol)		
C - C	Single	154	347		
C = C	Double	134	614		
$C \equiv C$	Triple	120	839		
C - O	Single	143	358		
C = O	Double	123	745		
C-N	Single	143	305		
C = N	Double	138	615		
$C \equiv N$	Triple	116	891		

Bond Energy and Enthalpy

$$\Delta H = \sum D_{bondsbroken} - \sum D_{bonds formed}$$

Energy required Energy released

D = Bond energy per mole of bonds

Breaking bonds always requires energy

Breaking = endothermic

Forming bonds always releases energy

Forming = exothermic

Bond Energy and Enthalpy

"Takes to Break" = + endo "Frees to Form" = - exo

How much energy does it take to break 2H₂O into 2H₂ and O₂?

Bond energies: O-H 463 kJ/mol, H-H 436 kJ/mol, O=O 498 kJ/mol

- Breaking: 4 O-H bonds → + values, absorbed, endo
- Making: 2 H-H bonds, and 1 O=O bond → values, released, exo

$$\Delta H = [4(463)] + [2(-436)+1(-498)] = 482 \text{ kJ/mol}$$

You see numbers vary a decent amount from chart to chart. Use what is in the problem, otherwise look them up an don't stress about slight differences.